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ABSTRACT

The sodium-like channel is idealized as a pore containing one electrostatic binding site
through which ions pass one at a time by executing a thermally driven random walk under
the influence of an electric field. Both exact formal solutions and simple approximate
solutions are obtained for the model's current-voltage behavior. The relationship of these
forms to that predicted by Goldman is discussed.

INTRODUCTION

The equation most commonly used to describe the current carried by an
ionic species across a unit area of membrane is that given by Goldman [2],
which may be written

(1)

where K^ = QzU}Vm/kT, e being the charge on the proton (= 1.602X 10~19

C); k is Boltzmann's constant (= 1.381 X 10~23 J/°K); T (°K) is the
absolute temperature; z(y) is the valence of the species; P(J) (ms"1) is the
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permeability of the membrane to that speices; ®s is the Faraday ( = 9.649 X
104 C mol"1), Vm (V) is the electric scalar potential of the bulk solution
inside a volume bounded by the membrane with respect to that outside the
volume; and a^ and a^ (mol/1) are, respectively, the activities in the bulk
solutions outside and inside that volume.

This equation was originally derived [2] under the somewhat restrictive
assumptions of constant-field theory, and since its introduction has been
given more general derivations by a number of workers. One of these was
that of Pickard [10], who showed that Eq. (1) would hold if certain
conditions of mathematical regularity were met and if:

(i) The net flux of species j varied linearly with both a^ and a^ and did
not depend upon the activities of other ions. This embodies the ideas of
both linearity and a sort of independence.

(ii) In the special case a^J) = a^ the net flux reverses exactly whenever Vm

is reversed. This is a symmetry condition.
(iii) The net flux is zero whenever the membrane voltage equals the

so-called Nernst potential for the ion,

(2)

(iv) Whenever a^ = a^J\e net flux is linearly proportional to Vm for all
Vm. This is a condition of global ohmicity.

This derivation possesses the advantage of assuming nothing about the
specific processes by which an ion moves passively through a membrane.
But it leaves unanswered the question of why a membrane should, with
respect to a given ionic species, admit of a flux which is either linear,
independent, symmetric, Nernstian, or globally ohmic. In order to see why
such conditions might obtain for a given flux, it is necessary first to
establish a physical model of the permeation process, and second to show
that these conditions are consequences of it.

The objects of this paper are (i) to construct an easily visualized physical
model for the passage of an ion from one bulk solution to the other by way
of channels with properties somewhat akin to those of the sodium channel
described by Bertil Hille [3-5], (ii) to quantify this model, and (iii) to
determine to what extent it implies (or assumes) independent, linear, sym-
metric, Nernstian, and globally ohmic behavior for this ion flux.

THE PHYSICAL MODEL

Consider first an ion in bulk solution on one side of the membrane.
Unless it is quite close to the membrane, its motion will be largely indiffe-
rent to the presence of the membrane, since it will undergo no collisions
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significantly influenced by the mechanical properties of the membrane, and
since the membrane's electrostatic properties will largely be hidden by
Debye shielding; at best the ion will undergo a slow drift in the electric field
associated with current flow through the membrane. Eventually, however,
the ion may approach one end of a channel, pass through the Debye shield,
and enter what will be termed that channel's "zone of influence". This
"zone of influence" will be loosely defined as a neighborhood about the end
of the channel within which the ion either is influenced by the electrostatic
properties of the channel and/or has no other ions between it and the
mouth of the channel. Once within a zone of influence, either the ion will
pass through the channel and into bulk solution on the other side of the
membrane or it will return to the bulk solution on the side from which it
first approached; the chance of its successfully passing through will be
called the transition probability. If the solutions bathing the membrane are
so dilute that the interaction of a particular ion with a channel will not be
interfered with by other ions interacting with the same channel, then jV'k\e current per unit area (A m~2) carried by ions of type j through channels

of type k will be given by1

y(/.*) = ezwY(«[py'»T^*>-p^*>Tfe-«], (3)

where yw (channels/m2) is the channel density, p^tk) (ions/s) is the arrival
rate of ions of type j in the zone of influence at the outer end of a channel
of type k, rV'k) (dimensionless) is the probability of transition which obtains
immediately after arrival at the outer end, and p/-/'*) and r^k} are analo-
gously defined. Equations (1) and (3) are at least superficially consistent.

To effect a calculation of arrival rate is by no means simple, since, as
Hille [3] has pointed out, the cage effect of the solvent favors an ion's
migrating but slowly from its present general location. However, this rate
should at least be linearly proportional to the activity of the ion near the
zone of influence. And, in the mean, this presumable depends upon both
the bulk concentration of the ion and the distribution of electric scalar
potential about the mouth of the channel. Since [3] these channels, if
uniformly spaced, will be at least 50 nm apart, measurements of gross
membrane surface potential will reveal little or nothing about the potential
near a channel's mouth: neither its general level, nor its decay normal to the
membrane surface, nor its angular variation. Therefore, in the absence of

'The term "channel" is here used in the sense of a geometrically defined transmem-
brane pathway of specifed properties. If the molecules delimiting such a pathway can
rearrange to yield pathways of other properties, then each such state has a separate
superscript.
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compelling evidence to the contrary, it will be assumed that arrival rates can
be satisfactorily approximated by

po,/o = /jao> (4a)

and
pU,*)^^) (4b)

where fi ((ions/s)/(mol/l)) is a constant. That is, it will be assumed that the
arrival rate of ions of species j is proportional to that species's concentration
in bulk solution as modified by an activity coefficient.

It was pointed out by Hille [3] that the data for normally polarized squid
axons suggest that almost every sodium ion which arrives at an open
sodium channel passes through. This suggests that the process of transit is
so rapid that, within such a channel, there is little interaction between
transiting charges. It will therefore be assumed for this paper that the
interaction of an ion with a channel is completed without direct influence
from other ions. That is, it will be assumed that the transition probability of
an interacting ion can be computed by considering only the properties of
that ion and of the channel. This assumption is, of course, an independence
principle.

FORMAL SOLUTION: CONTINUUM MODEL

To obtain an approximate value of a transition probability it is con-
venient to proceed as follows. Consider the computation of r^'k\e
interaction will begin somewhere between x — — d— 8^ and x = — d, where
± d (m) are the coordinates of the outer surfaces of the membrane and 60(A:)

(m) is a distance beyond which the existence of the outer mouth of the
channel has been effectively masked by Debye shielding; presumably, in
solutions of reasonable ionic concentration, it will be of the order of 10 to
20 nm or less. The interaction will have ended by the time that the particle
has crossed either x= — d—8^ or x = d+8(k\e 5;(/c) (m) is defined
analogously to 8^k\e value of x at which the interaction begins will have
a probability distribution t]^tk\x\e ̂ '^(x) is zero outside the range
( — d—8^k\ d) and $I_dd _&&)*}¥'k\x)dx = 1. The expected transition proba-
bility TO(/'/C) will then be just the probability that a particle with an initial
distribution of location t\^tk\x) will eventually random-walk across the
absorbing boundary x = d+8^ before it walks across the absorbing
boundary x = — d — 8£k\s is formally analogous to the problem of the
diffusion in a potential field of a substance whose initial, distribution is
^ik\x)\g the transition probability corresponds to calculating the
fraction of the substance eventually absorbed by the boundary at x = d +
&<*>.
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The relevant set of equations is then (cf. Ref. 7)

41

(5)

(6a,6b)

£(x;0) = rtk\x), (6c)

where £(x;t) (ions/m) is the one-dimensional density of the fictitious
diffusing species, where n(J'k\x) (kg/s) is the effective frictional coefficient
of the species in the channel, and where \l/^'k\x) (V) is the electric scalar
potential perceived by a type-y ion at a position ;c in a type-A: channel.
Equations (5) and (6) may appear to be equivalent to a standard elec-
trodiffusion treatment of ion flow, but they are not. First, the philosophy
underlying them is different: they are for use in describing what, on the
average, happens to a single ion rather than temporal shifts in the distribu-
tion of a large number of ions. Second, the potential \(/(J'k\x) is due entirely
to ions in the bulk solutions and to the electromagnetic properties of the
channel: it is independent of supposed intrachannel densities of moving
charges.

The fraction of ions exiting at x — d+8^ will be just

(7)

If m0' is the effective frictional coefficient in free solution, then

,.</•*> = - (8)

since £(d+8{k)'9t) = Q by Eq. (6b), and since the total fraction exciting from
both ends is unity by the assumptions on t]^ik\x).

To evaluate Eq. (8) it is convenient to take the Laplace transforms of
Eqs. (5) and (6) to obtain

-dx ~dx dx
(9)
v '

(lOa, lOb)

where S(x;s) = f"£(x;t)e-stdt. Letting s^O and setting H(x;0) = 5(
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kT

d_
dx dx dx '

(11)

(12)

(13a,13b)

Thus, finding the transition probability reduces to effecting a solution of
Eqs. (12) and (13) for a special case: namely, dz/dx evaluated at x — d-\-

«,.<*>.
To evaluate Eq. (11), it is convenient to set

=
•/_

and reduce Eq. (12) to

dx

(14)

(15)

where 9Cj is a constant. Equation (15) is linear and of first order; its
solution can be written down at once as

-/:_„
(16)

where K(j'tk\x) = (z^Q/kT)^J>k\x). Equations (13), (14), and (15) can then
be applied to Eqs. (11) and (16) to obtain 5C2 = 0 and

)= i— 1

where 5Cj is given by

0

Hence,

(17)

(18)

- «/*>

(19)
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Since H0^k\x)= 1 over (-d,d+ 8W), Eq. (19) reduces to

43

T </.*> =
' 01

/
(20)

Similarly,

(21)

*dx

where

(22)

and i)^k\x) is defined in analogy to t}¥'k\x).
This completes the description of the model and its formal solution.

What remains is to evaluate, for suitable special cases, the integrals occur-
ring in Eqs. (14), (20), (21), and (22) to obtain useful expressions for the
current/0'^.

APPLICATIONS OF THE CONTINUUM SOLUTION

The combination of Eqs. (3), (4), (20), and (21) yields

(23)
iax

Although Eq. (23) is too general to be of numerical utility, it nevertheless
does reveal a number of interesting properties. First, it is clearly of the form

)\t is, the current is at least of a general



44 WILLIAM F. PICKARD AND JEROME Y. LETTVIN

form which includes the Goldman expression as a special case, and the
expression for the voltage at which Jr(7'/c) is zero includes the Nernst
expression as a special case. Second, while F^ and F2 are independent of the
variation of ̂ tk\x) within the channel, F3 is not; and, in particular, steric
hindrance within the channel will markedly increase n(J'k\x) and F3(Vm)
with a consequent decrease in J(J'k\, for the important case of cation
influx at large negative Vm, J^j^ will be maximal for K(J'k\x) which fall off
rapidly before \ H^'k\x) has decayed to zero; for example, if a sodium
channel contains a single negative site, as is suggested by the experiments of
Hille [5], then, both from these considerations and from considerations of
ionic selectivity, that site's most advantageous location would be near the
outer surface of the membrane, and this is precisely where the data on
tetrodotoxin blockage [8] suggest that it may be.

To obtain numerically useful expressions it is convenient to make a
number of simplifying assumptions: (i) 50<*> = $<*> = 8<*>; (ii) ̂ k\x) = ̂
over (-d-8(k\ d) and (d,d+8<*>); (iii) ̂  = 8(x + d + 8<*>/2) and rjp =
8(x — d— 8(k)/2). Equation (23) then assumes the simpler form2

&w k

(24)

Let it be assumed further that

, x<-d, (25a)

9 -d<x<d, (25b)

= ifcJ/) + Kc^«(x), x>d, (25c)

where K^J'k\x ^ is a "correction" term which is negligible outside (—d —
8(k\d+8(k)) a (d which takes into account the effects of surface potentials,
charged sites i long the channel, and other deviations from what one would
expect on the oasis of the most elementary constant-field approach to the

2Except for restricted forms of /c^'^(jc), Eq. (24) will be non-Nernstian. This appears
to be a consequence of the fact that an ion can be subjected to quite dissimilar electric
fields at the two ends of a channel. Equivalently, the electromagnetic properties of a
channel can be said to modify the effective ion activities at the mouths of the channel.
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problem of determining K^'^X), This then reduces Eq. (24) to

45

-d

e"V' }dx

(26)

But even this is too complicated, and still more simplifying assumptions
must be made to achieve results of practical utility.

Consider, therefore, what may be termed a "Goldman limit":

-d<x<d,

X

'2d

-d<x<d,

(27)

(28a)

(28b)

(28c)

where K^-k} and icf'''*) are dimensionless constant surface potentials defined
in analogy with Eq. (25). With this constant-field-type assumption, the
equation for current finally assumes a tractable form:

(d+d(k))-x

2d .,(/.*)

„(/•.*)

. (29)

when K^k) and /c^'*^ are negligible and 8w/2d<&\, this reduces to Eq. (1),
the classical Goldman expression.
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Eq. (29) also predicts inward-going rectification: when K^k)= 0 and

(30)

K^'k))a^J)(e2K^k)—\)/(K^k^eK^J'}). This, although it is inward-going recti-
fication, is not of the form predicted classically (cf. Ref. 1): the classical
result has a limiting form for K^—» + oo in which the coefficient of tf/7) is
e~^J'k\K^-\- /c/7'^) rather than that given above.

Beginning with Eq. (26), it is also possible to gain a clearer understand-
ing of dynamics of a normal sodium channel. /(7)/c) will seemingly be
maximized by locating a negative charge site near the outer end of the
channel, since the second term of the denominator will thereby be mini-
mized with respect to the first term. This feeling can be quantified for the
limiting case of a single negative site located at x = — d by examining Eq.
(29). For the sake of simplicity it is desirable to set /c/^^O, to consider
inward (associated with a^) and outward (associated with #/7)) currents
separately, and to examine only the ratios ?R1n and ^tout, where <3lin is the
ratio of the inward current with /c0(7'^^0 to the inward current with
KU>k) = Q9 ancj wnere <sj^out js analogously defined. Thus,

2d

(32)

Similarly,

'-1
«.</,*) +v-

(33)

The variation of 3tm with K^tk) and K^ is illustrated in Fig. 1. For these
calculations, it was assumed (i) that 8(k} was equal approximately to the
mean distance between cations in a 125 mM solution, or 1.3 nm, (ii) that 2d
was roughly 7.0-8.0 nm [6], and (iii) that 8^/2d was about £. Clearly, the
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effect of the potential well is to increase inward current near the resting
potential and to decrease it near the peak of the action potential. It should
however be noted that

-6.0 -5.0 -4.0 -3.0 -2.0, -1.0 1.0 2.0 3.0

FIG. 1. <3lin vs. /$•). The calculation was made from Eq. (32) using 8(k)/2d= {. The
variation of &out will, by Eq. (34), be proportional.

(34)

and that the net benefits of a negative charge site at the outer end of a
sodium channel will therefore peak and eventually decrease as K^J-k) be-
comes increasingly negative.

FORMAL SOLUTION: DISCRETE MODEL

Given that an ion has come within the zone of influence of a channel, it
can be imagined that, instead of proceeding in the smooth diffusive fashion
described above, it proceeds by a series of finite steps: that is, the ion's
motion is modeled not as a continuous electrodiffusive process but as a
classical "drunkard's walk" on a biased ramp or a "gambler's ruin" in an
unfair game. This, in some sense, is a jump-diffusion model, although the
physical visualization and the formal techniques employed are somewhat
different from those commonly used (cf. Ref. 12).

Assume therefore that a type-/: channel including its zones of influence
is N^ steps long, and let the outer solution be denoted as step-0 and the
inner solution as step-(N(/c) + 1). The probability of jumping inward from
step-« to step-O+1) can be called pn, while that of jumping outward to
step-(«— 1) can be called qn (=\. Computing the transition probabili-



48 WILLIAM F. PICKARD AND JEROME Y. LETTVIN

ties rVtk) and T///C) reduces then to a calculation on a Markov chain, a
computation which can not reasonably be carried out unless the problem is
simplified by assuming pn =p O = 0, l , . . . ,7V ( / c ) + 1). The relevant formulae
are(cf. [9, pp. 229 ff.] or [11])

The simplest assumption regarding #//? is that it is a function of K^
which is unity when the membrane voltage is zero and which approaches
unity as the number of steps increases. An obvious choice is

\) . (36)

and, in point of fact, this form can be simply derived from the considera-
tions of Maxwell-Boltzmann statistics presented in the following paper [11].

It then follows from Eqs. (3), (4), (35), and (36) that

ez(/) (

(37)

Clearly, as 7V(/c) becomes large, Eq. (37) reduces to Eq. (1), the standard
Goldman form.

A difficulty with this approach is that it does not take into account any
possible voltage dependence of the passage from bulk solution to zone of
influence while, by assuming equal pn, effectively attributing such a voltage
dependence to the passage back. Picturesquely, the problem of the drun-
kard's getting out of the saloon to begin his walk or of the gambler's raising
an initial stake has not been treated. Thus, for small N(k\. (37) fails to
yield a Nerstian equilibrium potential. This can be remedied by the ad hoc
procedure of supposing that the concentrations used in computing the
arrival rates in the zones of influence should be modified by Boltzmann
distribution factors of the form e-5 lc«)A^v(*)+1> a^ the outer zone and

es^/CA^+i) at the inner zone; that is, in crossing from bulk solution to
zone of influence the electric potential is assumed to shift by one-half a
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step. With this correction, the current becomes

(38)
sinh^/ci?

a form which displays the anticipated Nernstian behavior. When
1)|<1 it reduces to the classical Goldman form.

DISCUSSION

With respect to the basic question initially raised as to why a flux should
be linear, independent, symmetric, Nernstian, or globally ohmic, the model
revealed the following: (A) Linearity was an input to the model; but it is
certainly intuitively reasonable on the basis of kinetic theory. (B) Indepen-
dence can also be regarded as an input; or it can be viewed as a con-
sequence of the hypothesis of one ion at a time in the channel. (C) In the
continuum case, J^^ will satisfy the symmetry and Nernst-like properties
only if K^Jfk)=Kp'k^; and it will meet the global ohmicity condition only if
S<*>/2</->0 as well.

What we have shown therefore is that the thermally driven random walk
of a lone ion in an electric field can — under certain circumstances — yield a
Goldman-like channel current. The question of the behavior of Ju'k) when
more than one ion is permitted into a channel has of course been left open;
and actually, as is shown in the following paper [11], such currents need not
be Goldman-like.
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